Species Tag:	52012	Species Name:	DNCCC
Version:	1		
Date:	Jan. 1995		
Contributor:	M. L. Delitsky		
	H. M. Pickett		
Lines Listed:	3098	Q(300.0) =	12778.1637
Freq. $(GHz) <$	861.502	Q(225.0) =	9591.6915
Max. J:	99	Q(150.0) =	6395.7308
LOGSTR0 =	-10.0	Q(75.00) =	3199.2303
LOGSTR1 =	-100.0	Q(37.50) =	1601.0829
Isotope Corr.:	-3.824	Q(18.75) =	802.0379
Egy. $(cm^{-1}) >$		Q(9.375) =	402.5269
$\mu_a =$	5.665	A=	
$\mu_b =$		B=	4400.593
$\mu_c =$		C=	

The observed laboratory frequency measurements were taken from Y. Hirahara, Y. Oshima and Y. Endo, 1993, Astrophys. J. **403**, L83.

The dipole moment for HNCCC was calculated by P. Botschwina, M. Horn, S. Seeger and J. Flügge, 1992, Chem. Phys. Lett. **195**, 427. The same value was assumed for DNCCC.

Although quantum calculations of the structure indicate that the molecule may be non-linear, spectral measurements are available only for the K=0 state. For the purposes of fitting the spectra and predicting frequencies and intensities, the K=0 states are equivalent to a linear molecule. The catalog entries for this species are currently presented as a linear molecule, and the intensities are calculated for a unit concentration of K=0 molecules in the ground vibrational state.